
readgssi Documentation

Ian Nesbitt

May 04, 2021

TUTORIAL

1 Installing 3
1.1 Requirements . 3
1.2 Installation guide . 3
1.3 Testing . 5

2 General usage 7
2.1 Python usage . 7
2.2 bash usage . 8

3 Reading radar data 11
3.1 Reading with Python . 11
3.2 Reading with bash . 12

4 Plotting radargrams 15
4.1 Basic plotting . 15
4.2 Setting gain . 16
4.3 Changing axis units . 17
4.4 Making poster-quality figures . 18
4.5 Changing the colormap . 18
4.6 Suppressing the Matplotlib window . 19

5 Processing radar arrays 21
5.1 Stacking . 21
5.2 Getting rid of horizontal noise . 22
5.3 Distance normalization . 25
5.4 Reversing . 26

6 Translating to different formats 29
6.1 CSV . 29
6.2 numpy binary . 29
6.3 GPRPy-compatible format . 30

7 Advanced usage with bash 31
7.1 Processing all files in a folder . 31
7.2 Processing specific subsets of files . 32

8 Troubleshooting 33
8.1 Filtering errors . 33
8.2 Antenna code errors . 33

9 Contributing to this project 35

i

9.1 Code contributions . 35
9.2 Contributing in other ways . 35

10 readgssi.readgssi (main module) 37

11 readgssi.dzt (reads DZTs) 39

12 readgssi.arrayops (array manipulation) 41

13 readgssi.filtering 43

14 readgssi.functions (reusables) 45

15 readgssi.gps (ingest GPS info) 49

16 readgssi.plot 51

17 readgssi.translate (outputs) 53

18 readgssi.constants (essentials) 57
18.1 Physical constants . 57
18.2 GSSI constants . 57
18.3 Dictionaries . 57

19 readgssi.config (essentials) 59

20 Indices and tables 61

Python Module Index 63

Index 65

ii

readgssi Documentation

Welcome to readgssi’s documentation. This program was written to read and process ground-penetrating radar files
from instruments made by Geophysical Survey Systems Incorporated (GSSI), although I have no affiliation with nor
endorsement for the afforementioned organization.

readgssi is a tool intended for use as an open-source reader and preprocessing module for subsurface data collected
with GSSI ground-penetrating radar (GPR) devices. It has the capability to read DZT and DZG files with the same
pre-extension name and plot the data contained in those files.

TUTORIAL 1

readgssi Documentation

2 TUTORIAL

CHAPTER

ONE

INSTALLING

1.1 Requirements

I strongly recommend installing the following dependencies via Anaconda (https://www.anaconda.com/distribution/).

• obspy (https://docs.obspy.org)

• numpy (https://docs.scipy.org/doc/numpy)

• scipy (https://docs.scipy.org/doc/scipy/reference)

• matplotlib (https://matplotlib.org)

• pandas (https://pandas.pydata.org/pandas-docs/stable)

• h5py (http://docs.h5py.org/en/stable)

Those that are not available via the Anaconda installer are available on the Python Package Index (PyPI):

• pynmea2 (https://github.com/Knio/pynmea2)

• geopy (https://geopy.readthedocs.io/en/stable/)

• pytz (https://pythonhosted.org/pytz/)

Back to top ↑

1.2 Installation guide

Note: This does not cover the installation of Anaconda, as it may differ depending on your system, and there are many
excellent resources out there that can explain far better than me for your system of choice. Start with the Anaconda
installation guide.

Note: The console commands outlined here use Linux bash script. Mac users should be able to use all the same
commands as I do, but Windows users will need to install and understand the Windows Subsystem for Linux (WSL)
in order to execute these commands successfully. If you’d like information about installing and using WSL, see this
guide for more details: https://docs.microsoft.com/en-us/windows/wsl/install-win10

3

https://www.anaconda.com/distribution/
https://docs.obspy.org
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://docs.scipy.org/doc/numpy
https://docs.scipy.org/doc/scipy/reference/index.html#module-scipy
https://docs.scipy.org/doc/scipy/reference
https://matplotlib.org
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://pandas.pydata.org/pandas-docs/stable
http://docs.h5py.org/en/stable
https://github.com/Knio/pynmea2
https://geopy.readthedocs.io/en/stable/index.html#module-geopy
https://geopy.readthedocs.io/en/stable/
https://pythonhosted.org/pytz/
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
https://docs.microsoft.com/en-us/windows/wsl/install-win10

readgssi Documentation

1.2.1 Installing from PyPI

PyPI is the Python Package Index.

Open a Terminal interface (UNIX) or the Anaconda Prompt (Windows) and make sure Anaconda works:

conda --version

You should get output that displays the conda version (4.6.13 in this case). If not, please see note 1 above.

Once you have conda running, installing requirements is pretty easy. All dependencies are available through conda or
pip.

conda config --add channels conda-forge
conda create -n readgssi python==3.7 pandas h5py pytz obspy
conda activate readgssi
pip install readgssi

That should allow you to run the commands in the next section (General usage).

Note: This code is doing a couple important things so if you’re unfamiliar with python and/or terminal commands,
let’s go over what they are. conda config --add channels conda-forge tells conda to look in the conda
user code repository called “Conda Forge”. ObsPy and a lot of other user-created code lives in the Forge. Next, conda
create -n readgssi creates a virtual environment (more on that in a second).

We tell conda what software to put in that virtual environment using the rest of the line (python==3.7 pandas
h5py pytz obspy). We want python 3.7 specifically (hence python==3.7), and then the latest release of pan-
das, h5py, pytz, and obspy. This will install several other dependencies, notably numpy which is the library we really
care about because it allows us to do math on arrays.

Then, we activate our virtual environment using conda activate readgssi which allows us to operate in a
“virtual environment” which is basically a python space where you can install dependencies without messing with the
functionality of python on the rest of your machine. Now that we’re in the virtual environment, we can install things
using pip, the python package manager. pip install readgssi will install the readgssi version available
on the Python Package Index (PyPI) into your readgssi environment, but nowhere else. This is useful but can be
confusing: if you try to run readgssi from outside the virtual environment you just made, you will not be able to find
it! The reason it’s useful is that it doesn’t modify the version of python or packages that your computer may use for
system tasks (no one likes obscure errors, so we try to avoid them. . . and one of the best ways of doing that is by
using virtual environments). To get back into the readgssi environment you created, simply do conda activate
readgssi.

Back to top ↑

1.2.2 Installing from source

If you choose to install a specific commit rather than the latest working release of this software, I recommend doing
so via the following commands:

conda config --add channels conda-forge
conda create -n readgssi python==3.7 pandas h5py pytz obspy
conda activate readgssi
pip install git+https://github.com/iannesbitt/readgssi

If you plan on modifying the code and installing/reinstalling once you’ve made changes, you can do something similar
to the following, assuming you have conda dependencies installed:

4 Chapter 1. Installing

https://pypi.org

readgssi Documentation

cd ~
git clone https://github.com/iannesbitt/readgssi

make code changes if you wish, then:

pip install ~/readgssi

Back to top ↑

1.2.3 Installing onto armv7l architecture

This has not been tested (though will be in the future), but installing on the Raspberry Pi and other ARM processors
should be possible in theory. Start with this:

from https://github.com/obspy/obspy/wiki/Installation-on-Linux-via-Apt-Repository
deb http://deb.obspy.org stretch main
wget --quiet -O - https://raw.github.com/obspy/obspy/master/misc/debian/public.key |
→˓sudo apt-key add -
sudo apt-get update
sudo apt-get install python-obspy python3-obspy
sudo apt-get install ttf-bistream-vera
rm -rf ~/.matplotlib ~/.cache/matplotlib
sudo apt-get install python-pandas python-h5py
pip install -U pytz pynmea2 geopy readgssi

Todo: Install and test readgssi on armv7l architecture

Back to top ↑

1.3 Testing

There is no testing module as such yet, but a simple test will ensure that most things are working properly:

readgssi -V # this will display the version
readgssi -h # this will display the help text

If it’s working, head over to General usage.

Todo: Create a testing module and routines.

Back to top ↑

1.3. Testing 5

readgssi Documentation

6 Chapter 1. Installing

CHAPTER

TWO

GENERAL USAGE

readgssi can be run straight from a bash console, using a python interpreter like ipython or the python console,
or scripted in a development environment like Jupyter Notebook, Spyder, or Pycharm. Usage of bash is covered in
bash usage, while usage in python is covered below in Python usage.

Note: In the first part of this tutorial, I will separate bash and python operations, but towards the end I will bring
them together, as they will produce nearly identical outputs. However, I felt it pertinent to separate the two at the start,
since some may know either bash or python but not both. Newcomers to either one will note that both have different
benefits over the other, which is why I develop most of the functionality of this program to be accessible from both.

bash is useful for coordinating calls to multiple files in a directory in for loops, which has distinct uses for processing
large amounts of files in a much shorter amount of time than RADAN. bash’s range of interoperability is much
narrower, but it is very good at processing a number of things in a row using similar patterns of parameters.

Python is useful for its ability to hold objects in memory, and to pass objects to and from various functions. Python’s
range is broader in terms of array manipulation and object passing.

2.1 Python usage

Most python functionality is covered under the modules in the left panel, and in the following sections. I will cover
the very basics here.

The readgssi.readgssi.readgssi() covers a large portion of the use cases you are likely to want out of
readgssi. A properly formulated command is long but should return what you want. In the future, radar arrays will be
python classes, which will make things easier.

Simply printing a file’s header information to output is easy:

>>> from readgssi import readgssi
>>> readgssi.readgssi(infile='DZT__001.DZT', frmt=None, verbose=True)
2019-07-22 16:56:20 - reading...
2019-07-22 16:56:20 - input file: DZT__001.DZT
2019-07-22 16:56:20 - WARNING: no time zero specified for channel 0, defaulting to 2
2019-07-22 16:56:20 - success. header values:
2019-07-22 16:56:20 - system: SIR 4000 (system code 8)
2019-07-22 16:56:20 - antennas: ['3207', None, None, None]
2019-07-22 16:56:20 - time zeros: [2, None, None, None]
2019-07-22 16:56:20 - ant 0 center freq: 100 MHz
2019-07-22 16:56:20 - date created: 2017-07-25 18:21:24+00:00
2019-07-22 16:56:20 - date modified: 2018-08-06 17:02:24+00:00
2019-07-22 16:56:20 - gps-enabled file: yes

(continues on next page)

7

readgssi Documentation

(continued from previous page)

2019-07-22 16:56:20 - number of channels: 1
2019-07-22 16:56:20 - samples per trace: 2048
2019-07-22 16:56:20 - bits per sample: 32 signed
2019-07-22 16:56:20 - traces per second: 24.0
2019-07-22 16:56:20 - traces per meter: 300.0
2019-07-22 16:56:20 - epsr: 80.0
2019-07-22 16:56:20 - speed of light: 3.35E+07 m/sec (11.18% of vacuum)
2019-07-22 16:56:20 - sampling depth: 33.5 m
2019-07-22 16:56:20 - "rhf_top": 3.4 m
2019-07-22 16:56:20 - offset to data: 131072 bytes
2019-07-22 16:56:20 - traces: 28343
2019-07-22 16:56:20 - seconds: 1180.95833333
2019-07-22 16:56:20 - array dimensions: 2048 x 28343
2019-07-22 16:56:20 - beginning processing for channel 0 (antenna 3207)
>>>

Note here that there is a warning regarding the time-zero. That can be set using zero=[int], but won’t really come
into play until the next section.

See Reading radar data for next steps.

Back to top ↑

2.2 bash usage

readgssi comes with a UNIX command line interface, for easy bash scripting. This is very useful when processing
folders full of many files. If you’d like a full description of all options, enter:

readgssi -h

You should see readgssi output its help text, which will display options like those below, but in a more condensed
form.

Note: Each option flag here below passed to readgssi.readgssi.readgssi() after the command has been
processed by readgssi.readgssi.main().

Usage:

readgssi -i input.DZT [OPTIONS]

2.2.1 Required flags

-i file, --infile=file Input DZT file.

8 Chapter 2. General usage

readgssi Documentation

2.2.2 Optional flags

-o file, --outfile=file Output file. If not set, the output file will be named similar to the
input. See readgssi.functions.naming() for naming con-
vention details.

-f str, --format=str Output file format (eg. “csv”, “numpy”, “gprpy”). See readgssi.
translate.

-p int, --plot=int Tells readgssi.plot.radargram() to create a radargram
plot <int> inches high (defaults to 7).

-D int, --dpi=int Set the plot DPI in readgssi.plot.radargram() (defaults to
150).

-T, --titleoff Tells readgssi.plot.radargram() to turn the plot title off.

-x m, --xscale=m X units for plotting. Will attempt to convert the x-axis to distance,
time, or trace units based on header values. See readgssi.plot.
radargram() for scale behavior. Combine with the -N option to
enable distance normalization, or -d int to change the samples per
meter.

-z m, --zscale=m Z units for plotting. Will attempt to convert the x-axis to depth, time,
or sample units based on header values. See readgssi.plot.
radargram() for scale behavior. Combine with the -E int op-
tion to change the dielectric.

-n, --noshow Suppress matplotlib popup window and simply save a figure (useful
for multi-file processing).

-c str, --colormap=str Specify the colormap to use in radargram creation function
readgssi.plot.radargram(). For a list of values that
can be used here, see https://matplotlib.org/users/colormaps.html#
grayscale-conversion

-g int, --gain=int Gain constant (higher=greater contrast, default: 1).

-r int, --bgr=int Horizontal background removal (useful to remove ringing). Specify-
ing 0 as the argument here sets the window to full-width, whereas a
positive integer sets the window size to that many traces after stack-
ing.

-R, --reverse Reverse (flip array horizontally) using readgssi.arrayops.
flip().

-w, --dewow Trinomial dewow algorithm (experimental, use with caution). For
details see readgssi.filtering.dewow().

-t int-int, --bandpass=int-int Triangular FIR bandpass filter applied vertically (posi-
tive integer range in megahertz; ex. 70-130). For details see
readgssi.filtering.triangular().

-b, --colorbar Adds a matplotlib.colorbar.Colorbar to the radar figure.

-a, --antfreq=int Set the antenna frequency. Overrides header value in favor of the one
set here by the user.

-s, --stack=int Set the trace stacking value or “auto” to autostack, which results in a
~2.5:1 x:y axis ratio.

2.2. bash usage 9

https://matplotlib.org/users/colormaps.html#grayscale-conversion
https://matplotlib.org/users/colormaps.html#grayscale-conversion
https://matplotlib.org/api/colorbar_api.html#matplotlib.colorbar.Colorbar

readgssi Documentation

-N, --normalize Distance normalize. readgssi.gps.readdzg() reads the
.DZG NMEA data file if it exists, otherwise tries to read CSV with
lat, lon, and time fields. Then, the radar array and GPS time series are
passed to readgssi.arrayops.distance_normalize()
where the array is expanded and contracted proportional to the dis-
tance traveled between each GPS distance mark. This is done in
chunks to save memory.

-d float, --spm=float Specify the samples per meter (SPM). Overrides header value. Be
careful using this option on distance-naive files, and files in which
“time” was used as the main trigger for trace shots!

-m, --histogram Produces a histogram of data values for each channel using
readgssi.plot.histogram().

-E float, --epsr=float User-defined epsilon_r (sometimes referred to as “dielectric”). If
set, ignores value in DZT header in favor of the value set here by the
user.

-Z int, -Z list, --zero=int, --zero=list Timezero: skip this many samples before the direct
wave arrives at the receiver. Samples are removed from the top of the
trace. Use a four-integer list format for multi-channel time-zeroing.
Example: -Z 40,145,233,21.

Command line functionality is explained further in the following sections.

Back to top ↑

10 Chapter 2. General usage

CHAPTER

THREE

READING RADAR DATA

• Reading with Python

• Reading with bash

3.1 Reading with Python

3.1.1 Simplest usage (reading the header)

As mentioned in the previous section, you can use readgssi.readgssi.readgssi() to output some of the
header values: * name of GSSI control unit * antenna model * antenna frequency * samples per trace * bits per sample
* traces per second * L1 dielectric as entered during survey * sampling depth * speed of light at given dielectric *
number of traces * number of seconds * . . . and more. In all likelihood, more than you need or want to know. However
if you feel there is something important I’m leaving out, I’d be happy to include it. Open a github feature request issue
and let me know what you would like to see.

Printing a file’s header information to output is easy. Use frmt=None and verbose=True.

>>> from readgssi import readgssi
>>> readgssi.readgssi(infile='DZT__001.DZT', frmt=None, verbose=True)
2019-07-22 16:56:20 - reading...
2019-07-22 16:56:20 - input file: DZT__001.DZT
2019-07-22 16:56:20 - WARNING: no time zero specified for channel 0, defaulting to 2
2019-07-22 16:56:20 - success. header values:
2019-07-22 16:56:20 - system: SIR 4000 (system code 8)
2019-07-22 16:56:20 - antennas: ['3207', None, None, None]
2019-07-22 16:56:20 - time zeros: [2, None, None, None]
2019-07-22 16:56:20 - ant 0 center freq: 100 MHz
2019-07-22 16:56:20 - date created: 2017-07-25 18:21:24+00:00
2019-07-22 16:56:20 - date modified: 2018-08-06 17:02:24+00:00
2019-07-22 16:56:20 - gps-enabled file: yes
2019-07-22 16:56:20 - number of channels: 1
2019-07-22 16:56:20 - samples per trace: 2048
2019-07-22 16:56:20 - bits per sample: 32 signed
2019-07-22 16:56:20 - traces per second: 24.0
2019-07-22 16:56:20 - traces per meter: 300.0
2019-07-22 16:56:20 - epsr: 80.0
2019-07-22 16:56:20 - speed of light: 3.35E+07 m/sec (11.18% of vacuum)
2019-07-22 16:56:20 - sampling depth: 33.5 m
2019-07-22 16:56:20 - "rhf_top": 3.4 m
2019-07-22 16:56:20 - offset to data: 131072 bytes
2019-07-22 16:56:20 - traces: 28343

(continues on next page)

11

https://github.com/iannesbitt/readgssi/issues/new

readgssi Documentation

(continued from previous page)

2019-07-22 16:56:20 - seconds: 1180.95833333
2019-07-22 16:56:20 - array dimensions: 2048 x 28343
2019-07-22 16:56:20 - beginning processing for channel 0 (antenna 3207)
>>>

Note here that there is a warning regarding the time-zero. That can be set using zero=[int], as below.

3.1.2 Reading to Python objects

Now, we’ll be reading the file into python objects using readgssi.readgssi.readgssi().

If you would like to return the header, radar array, and gps info (if it exists), and set time-zero to 233 samples, the
command is simpler. Here, we drop verbose=True, and frmt=None, which suppresses console output and causes
python objects to be returned:

>>> hdr, arrs, gps = readgssi.readgssi(infile='DZT__001.DZT', zero=[233])
>>> type(hdr)
<class 'dict'>
>>> type(arr[0])
<class 'numpy.ndarray'>
>>> type(gps)
<class 'pandas.core.frame.DataFrame'>

If no GPS file exists, you will get a soft error printed to the console, like this, and the gps variable will be False:

>>> hdr, arrs, gps = readgssi.readgssi(infile='DZT__002.DZT', zero=[233])
2019-07-22 17:28:43 - WARNING: no DZG file found for GPS import
>>> print(gps)
False

No valid GPS file means that you will not be able to distance normalize the array using normalize=True. If you
do happen to have a valid GPS file to normalize with, skip to Processing radar arrays to learn how to do it.

Back to top ↑

3.2 Reading with bash

Same as above, you can print a host of information about the DZT specified with a simple command.

From a unix/linux/mac command line or Windows Anaconda Prompt, type:

$ readgssi -i DZT__001.DZT
2019-07-22 16:56:20 - reading...
2019-07-22 16:56:20 - input file: DZT__001.DZT
2019-07-22 16:56:20 - WARNING: no time zero specified for channel 0, defaulting to 2
2019-07-22 16:56:20 - success. header values:
2019-07-22 16:56:20 - system: SIR 4000 (system code 8)
2019-07-22 16:56:20 - antennas: ['3207', None, None, None]
2019-07-22 16:56:20 - time zeros: [2, None, None, None]
2019-07-22 16:56:20 - ant 0 center freq: 100 MHz
2019-07-22 16:56:20 - date created: 2017-07-25 18:21:24+00:00
2019-07-22 16:56:20 - date modified: 2018-08-06 17:02:24+00:00
2019-07-22 16:56:20 - gps-enabled file: yes
2019-07-22 16:56:20 - number of channels: 1

(continues on next page)

12 Chapter 3. Reading radar data

readgssi Documentation

(continued from previous page)

2019-07-22 16:56:20 - samples per trace: 2048
2019-07-22 16:56:20 - bits per sample: 32 signed
2019-07-22 16:56:20 - traces per second: 24.0
2019-07-22 16:56:20 - traces per meter: 300.0
2019-07-22 16:56:20 - epsr: 80.0
2019-07-22 16:56:20 - speed of light: 3.35E+07 m/sec (11.18% of vacuum)
2019-07-22 16:56:20 - sampling depth: 33.5 m
2019-07-22 16:56:20 - "rhf_top": 3.4 m
2019-07-22 16:56:20 - offset to data: 131072 bytes
2019-07-22 16:56:20 - traces: 28343
2019-07-22 16:56:20 - seconds: 1180.95833333
2019-07-22 16:56:20 - array dimensions: 2048 x 28343
2019-07-22 16:56:20 - beginning processing for channel 0 (antenna 3207)

Back to top ↑

3.2. Reading with bash 13

readgssi Documentation

14 Chapter 3. Reading radar data

CHAPTER

FOUR

PLOTTING RADARGRAMS

Plotting is often essential to data manipulation quality control. Here are some basic examples of plotting and plot
rendering methods.

I give examples below, but you will quickly realize that a lot of radar data requires at least a little bit of a touchup
before it looks presentable. That’s covered in the next section, Processing radar arrays. Note that some of the
examples below will jump ahead to use methods covered in that section.

Note: I apologize to metric system users. matplotlib uses inches and dots per inch (DPI) and for consistency’s sake I
chose to adhere to imperial units for plot size :(

4.1 Basic plotting

4.1.1 Plotting with Python

Plotting in Python just means setting plot=7 or another integer, which represents the vertical size in inches. In this
simple example, we use the zero=[233] flag to get rid of the part of the radargram from before the direct wave
meets the receiver.

from readgssi import readgssi
readgssi.readgssi(infile='DZT__001.DZT', outfile='0a.png', frmt=None,

zero=[233], plot=5)

Whoops! That’s very long and not very helpful on a standard computer monitor. Let’s pretend we’ve read Processing
radar arrays and know how to stack arrays horizontally (see Stacking), and let’s also add some gain to this image as
well. (Jump to Setting gain)

15

readgssi Documentation

4.1.2 Plotting with bash

Plotting on the command line is easy. The most basic plotting routine is accessible just by setting the -p flag and
specifying a plot height in inches (-p 5). Here, we also use a zero of 233 samples (-Z 233).

readgssi -i DZT__001.DZT -o 0a.png -Z 233 -p 5

Whoops! As you notice in the Python example above, this file is very long, which makes viewing tough on a screen
(but may be what you want for figure creation).

Back to top ↑

4.2 Setting gain

Gain is added using the gain=int setting. Let’s set that to 60, since this is a lake profile and radar waves attenuate
quickly in water. Here, Python and bash examples are given together.

Note: The gain parameter can also be set to a float value between 0 and 1 in order to reduce gain.

Note: This command sets the stacking parameter to “auto”, which is explained in Stacking.

readgssi.readgssi(infile='DZT__001.DZT', outfile='0b.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60)

readgssi -i DZT__001.DZT -o 0b.png -Z 233 -p 5 -s auto -g 60

Wow, looking much better! Now let’s see if we can display depth units on the Z-axis.

Back to top ↑

16 Chapter 4. Plotting radargrams

readgssi Documentation

4.3 Changing axis units

4.3.1 Z axis

The Z axis can be displayed in three different unit types: samples, time, and distance. By default, it will display in
nanoseconds (ns). The possible values for time display are “temporal”, “time”, “nanoseconds”, and “ns”. Setting the
z parameter to “samples” sets the axis to display the number of samples (cells) on that axis.

To set the Z-axis to display material depth, we use two separate flags: epsr=80 or -E 80 — which modifies the
wave velocity by setting the dielectric to roughly that of water at 20 degrees C — and z=’m’ or -z m, which sets
the z-axis to use those units to calculate profile depths. “m” stands for meters, but you can also specify “meters”,
“centimeters”/”cm”, or “millimeters”/”mm” explicitly.

readgssi.readgssi(infile='DZT__001.DZT', outfile='0c.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60,
epsr=80, z='m')

readgssi -i DZT__001.DZT -o 0c.png -Z 233 -p 5 -s auto -g 60 -z m -E 80

If you would like to learn how to remove the horizontal noise in the water column of this image, head to Getting rid of
horizontal noise.

4.3.2 X axis

Warning: Changing the X-axis units is simple as well, but beware that distance units will not be accurate unless
the file is either distance normalized, or was recorded with a survey wheel or DMI and has a proper samples per
meter value set. See Distance normalization for more information.

The X axis can be displayed in time, traces, and distance. By default, it will display in seconds (s). To set this to
“traces”, which is calculated from the number of samples on the axis prior to stacking, set the x=’traces’ or -x
traces flag. See the warning above about setting the axis to distance.

Back to top ↑

4.3. Changing axis units 17

readgssi Documentation

4.4 Making poster-quality figures

Let’s say you are really enamored with the way that last figure looks, and you now want to create a figure-quality
image for a poster. You’ll likely want to drop the title (title=False in Python or -T in bash), and increase the DPI
to something that will work well on a plotter (dpi=300 in Python or -D 300 in bash). Pretty simple. Let’s see it in
action.

Note: I use 300 DPI here to keep file size down, but if you are truly aiming for very high print quality, you may want
to increase to 600 DPI to match the capability of most high-end plotters.

readgssi.readgssi(infile='DZT__001.DZT', outfile='0d.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60,
epsr=80, z='m', title=False, dpi=300)

readgssi -i DZT__001.DZT -o 0d.png -Z 233 -p 5 -s auto -g 60 -z m -E 80 -T -D 300

Back to top ↑

4.5 Changing the colormap

By default, the colormap is Matplotlib’s “gray”, which is intended to emulate RADAN’s default.

Changing colormaps is as simple as specifying a valid matplotlib.colors.Colormap to use. For a list of valid
colormaps, see the Matplotlib documentation. A popular alternative is “seismic”, a diverging blue-white-red colormap
used often in sub-bottom seismic surveying.

readgssi.readgssi(infile='DZT__001.DZT', outfile='0e.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60,
epsr=80, z='m', title=False, dpi=300,
colormap='seismic')

readgssi -i DZT__001.DZT -o 0e.png -Z 233 -p 5 -s auto -g 60 -z m -E 80 -T -D 300 -c
→˓seismic

18 Chapter 4. Plotting radargrams

https://matplotlib.org/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap
https://matplotlib.org/users/colormaps.html#miscellaneous

readgssi Documentation

Changed in version 0.0.16: The default colormap was changed to “gray”, because of a previously unnoticed polarity
switch in the previous default “Greys”.

Back to top ↑

4.6 Suppressing the Matplotlib window

By default, the matplotlib GUI window will display upon successful execution and saving of the radargram, so that
you can modify titles and other plot features. To suppress this behavior, set the noshow=True or -n option.

Because the program will wait for the closure of the Matplotlib window before continuing, this flag is useful for
processing folders full of files in bash without user attention.

Note: If plotting is on, readgssi will always save an image, regardless of whether or not the Matplotlib GUI is set to
show up. I have found that this behavior makes it easier to save files under the same name but with title and axis label
modifications.

This is especially useful when the outfile parameter is not set, and the program uses the readgssi.
functions.naming() function to set complex but informative filenames. When saving from the Matplotlib
window, click the save button, navigate to the file just saved by the program, then single-click the file name. The
save dialog will auto-populate the filename and you can overwrite without the hassle of copying and pasting.

Back to top ↑

4.6. Suppressing the Matplotlib window 19

readgssi Documentation

20 Chapter 4. Plotting radargrams

CHAPTER

FIVE

PROCESSING RADAR ARRAYS

Note: This section covers some rudimentary (and some more complex) preprocessing methods. Note that these are
only a few of the most common methods. If you would like to see another method added here, please open a github
issue and briefly explain the method, preferably including the math involved.

5.1 Stacking

Stacking is the process of adding a number of successive neighboring trace columns together, both in order to reduce
noise (by cancelling out random variation in neighboring cells) and to condense the X-axis of the radar array. This is
very useful in lines with a high number of traces, as it both helps accentuate returns and make the long axis viewable
on a reasonable amount of screen space.

The stacking algorithm is available in readgssi by using the stack= argument in Python or the -s flag in bash. This
program contains two methods of stacking: automatic and manual.

5.1.1 Autostacking

The automatic stacking method checks the ratio of width to height and if it’s above 2.5:1, sets the stacking parameter
roughly equal to 2.5:1. This can reduce the hassle of trying a number of different stacking values like in RADAN. In
Python, this is accessible via the stack=’auto’ argument, while in bash, the flag is -f auto.

The file used in Basic plotting in the previous section shows the full length of the survey line. Below is the result of
autostacking that line and turning the gain up (explained in Setting gain).

readgssi.readgssi(infile='DZT__001.DZT', outfile='1a.png', frmt=None,
zero=[233], plot=5, gain=60, stack='auto')

readgssi -i DZT__001.DZT -o 1a.png -Z 233 -p 5 -g 60 -s auto

21

https://github.com/iannesbitt/readgssi/issues/new
https://github.com/iannesbitt/readgssi/issues/new

readgssi Documentation

5.1.2 Stacking manually

Sometimes it is preferable to stack a plot a specific number of times determined by the user. Occasionally, you may
want to create plots that are longer (have less stacking) or shorter (have more stacking) than the auto method. The
example above is stacked 6 times, here we will stack half that amount (i.e. the X-axis will be longer). In python:
stack=3; in bash: -s 3.

readgssi.readgssi(infile='DZT__001.DZT', outfile='1b.png', frmt=None,
zero=[233], plot=5, gain=60, stack=3)

readgssi -i DZT__001.DZT -o 1b.png -Z 233 -p 5 -g 60 -s 3

Back to top ↑

5.2 Getting rid of horizontal noise

5.2.1 Horizontal average filters (BGR)

Horizontal average filters, also known as background removal or BGR, are commonly used to remove both low-
frequency skew and higher frequency horizontal reverberation banding that can occur in some survey environments.
In this program there are two types of BGR: full-width average and moving window average. The former resembles
RADAN’s simplest BGR algorithm, while the latter emulates its BOXCAR style filter.

22 Chapter 5. Processing radar arrays

readgssi Documentation

Full-width

The full-width BGR filter in readgssi simply takes the average of each row in the array and subtracts that value from
the row values themselves, essentially moving their mean value to zero. This can work well in some environments but
can cause additional horizontal banding if strongly reflective layers are horizontal for many consecutive traces.

readgssi.readgssi(infile='DZT__001.DZT', outfile='2a.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60,
bgr=0)

readgssi -i DZT__001.DZT -o 2a.png -Z 233 -p 5 -s auto -g 60 -r 0

Boxcar/moving window

The boxcar-style method is preferred by many because although it has a tendancy to wipe out data that’s too strongly
horizontal, it also removes more noise from areas of weak returns and can help make the profile look cleaner. The side
effect of this is that it causes artificial wisps on either side of non-horizontal objects, about the size of half the window,
and that it can wipe out horizontal layers that are longer than the window length. If you find that it turns horizontal
layers into indistinguishable mush, increase the window size and try again.

readgssi.readgssi(infile='DZT__001.DZT', outfile='2b.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60,
bgr=100)

readgssi -i DZT__001.DZT -o 2b.png -Z 233 -p 5 -s auto -g 60 -r 100

5.2. Getting rid of horizontal noise 23

readgssi Documentation

5.2.2 Frequency filter (vertical triangular bandpass)

The vertical filter is more sophisticated and requires proper identification of the antenna’s center frequency. Because
antennas emit bands of frequencies centered around the manufacturer’s specified center frequency, data will often
lie within those frequencies. However, noise at other frequency bands is sometimes picked up, whether due to the
dielectric of the first layer, or external sources. Often it will be necessary to let pass only the frequencies around the
center frequency.

For a 100 MHz antenna, this band can be as wide as 70-130 MHz at low dielectric values. Open water profiles are
often much cleaner after being filtered approximately 80% as high as those in higher dielectric media, approximately
60-100 MHz.

readgssi.readgssi(infile='DZT__001.DZT', outfile='2c.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60,
freqmin=60, freqmax=100)

readgssi -i DZT__001.DZT -o 2c.png -Z 233 -p 5 -s auto -g 60 -t 60-100

24 Chapter 5. Processing radar arrays

readgssi Documentation

5.2.3 Combining filters

It’s typically worthwhile to play with combining filters, as often they can have a compounding effect on cleaning up
the profile. See for example what the application of both the horizontal moving window and the vertical triangular
filter can do to make the water column of this lake profile look clean enough to see thermoclines:

readgssi.readgssi(infile='DZT__001.DZT', outfile='2c.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60, dpi=300,
bgr=100, freqmin=60, freqmax=100)

readgssi -i DZT__001.DZT -o 2c.png -Z 233 -p 5 -s auto -g 60 -D 300 -r 100 -t 60-100

Back to top ↑

5.3 Distance normalization

If your files are recorded as time-triggered such as in the case of this lake profile, they need to be distance-normalized
before they can be rendered with distance on the X-axis. This can only be done if there is proper GPS information in
DZG format.

The relevant function is readgssi.arrayops.distance_normalize, accessible with normalize=True
or -N, which calculates the distance traveled between GPS marks and resamples the array to a normalized state,
then calculates the new samples per meter value and applies that to the header. The resulting corrected array can be
displayed in distance units with x=’m’ or -x m.

Warning: Do not use x=’m’ or -x m without either a DMI or distance normalization, as the file header samples
per meter value could be very wrong (and in some cases will surely be wrong due to how RADAN handles distance,
which has known flaws).

Note: Recording GPS information with a GSSI system that does not have GPS input is not recommended. However,
GPS marks can be aligned with user marks in GSSI files if the user can record GPS and radar mark information at the

5.3. Distance normalization 25

readgssi Documentation

same time every set number of meters traveled. GPX (GPS exchange format) files with identical marks to GSSI files
can be cross-correlated to DZG by using the gpx2dzg software package.

This example distance normalizes and displays the X-axis in meters. Note the change in the beginning of the line, in
which the slope appears longer than it really is due to slower survey speed at the start of the line.

readgssi.readgssi(infile='DZT__001.DZT', outfile='2c.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60,
normalize=True, x='m')

readgssi -i DZT__001.DZT -o 3a.png -Z 233 -p 5 -s auto -g 60 -N -x m

5.3.1 X axis distance units

The X-axis can be modified to display various distance units. These include: kilometers/km, meters/m, and centime-
ters/cm. To use these, set x=’km’ / -x km, x=’m’ / -x m, or x=’cm’ / -x cm.

See warning above for caveats about using distance units.

Back to top ↑

5.4 Reversing

Sometimes it is necessary to reverse the travel direction of a survey line in order to show a comparison with a line
that travels in the opposite direction. readgssi will read arrays backwards if reverse=True or -R are set, using the
readgssi.arrayops.flip() function.

readgssi.readgssi(infile='DZT__001.DZT', outfile='4a.png', frmt=None,
zero=[233], plot=5, stack='auto', gain=60,
reverse=True)

readgssi -i DZT__001.DZT -o 4a.png -Z 233 -p 5 -s auto -g 60 -R

26 Chapter 5. Processing radar arrays

https://github.com/iannesbitt/gpx2dzg

readgssi Documentation

Back to top ↑

5.4. Reversing 27

readgssi Documentation

28 Chapter 5. Processing radar arrays

CHAPTER

SIX

TRANSLATING TO DIFFERENT FORMATS

6.1 CSV

6.1.1 Basic CSV

Translation to csv is easy.

Python:

readgssi.readgssi(infile='DZT__001.DZT', outfile='DZT__001.csv', frmt='csv')

bash:

readgssi -i DZT__001.DZT -o DZT__001.csv -f csv

6.1.2 CSV of processed data

It’s common to process data before outputting. Here, we distance-normalize and filter before writing to CSV.

Python:

readgssi.readgssi(infile='DZT__001.DZT', outfile='DZT__001.csv', frmt='csv',
normalize=True, freqmin=60, freqmax=100, bgr=0)

bash:

readgssi -i DZT__001.DZT -o DZT__001.csv -f csv -N -t 60-100 -r 0

6.2 numpy binary

The following python and bash commands do the same (process then output), but output to numpy binary format
instead.

Python:

readgssi.readgssi(infile='DZT__001.DZT', outfile='DZT__001.csv', frmt='numpy',
normalize=True, freqmin=60, freqmax=100, bgr=0)

bash:

29

readgssi Documentation

readgssi -i DZT__001.DZT -o DZT__001.csv -f numpy -N -t 60-100 -r 0

6.3 GPRPy-compatible format

And finally, these commands output the same data to a format compatible with GPRPy, which involves numpy binary
(.npy) and a JSON serialization of header values.

Python:

readgssi.readgssi(infile='DZT__001.DZT', outfile='DZT__001.csv', frmt='gprpy',
normalize=True, freqmin=60, freqmax=100, bgr=0)

bash:

readgssi -i DZT__001.DZT -o DZT__001.csv -f gprpy -N -t 60-100 -r 0

Back to top ↑

30 Chapter 6. Translating to different formats

https://github.com/NSGeophysics/gprpy

CHAPTER

SEVEN

ADVANCED USAGE WITH BASH

UNIX users have a distinct advantage of being able to easily process entire folders full of DZTs with a simple com-
mand. Users who wish to do this should read up on how to construct for loops in Bash or simply follow and modify
these examples below.

7.1 Processing all files in a folder

This command makes use of the ls function in Bash, which lists all files that match a specific pattern. In this case, we
want the pattern to be “any DZT file,” which ends up being simply ls *.DZT (the * symbol is a wildcard, meaning
it matches any set of characters, so in this case it would match both FILE____005.DZT and test.DZT but not
Test01.dzt because the .DZT is case sensitive.).

for f in `ls *.DZT`; do readgssi -p 8 -n -r 0 -g 40 -Z 233 -z ns -N -x m -s auto -i
→˓$f; done

The structure of this command is easy to understand if you know a little bit about for loops. This command loops
over every file with the extension .DZT (ls *.DZT where * indicates a wildcard) and assigns the filename to the
f variable on each loop. Then, after the semicolon, bash runs readgssi for every pass of the loop. In this case, the
parameters are:

-p 8 # plot with size 8
-n # suppress the matplotlib window; useful if you do not want the operation
→˓interrupted
-r 0 # full-width background removal
-g 40 # gain of 40
-Z 233 # time zero at 233 samples
-z ns # display the depth axis in nanoseconds
-N # distance-normalize the profile
-x m # display the x-axis in meters
-s auto # apply automatic stacking
-i $f # recall the `f` variable containing this loop's filename and feed it to the
→˓input flag of readgssi

Finally, end the loop by closing the command with a linebreak ;, and the done marker.

31

https://linuxize.com/post/bash-for-loop/

readgssi Documentation

7.2 Processing specific subsets of files

You can make the command even more specific by further modifying the set of files returned by the ls command. For
example:

for f in `ls FILE__{010..025}.DZT`; do readgssi -p 8 -n -r 0 -g 40 -Z 233 -z ns -N -x
→˓m -s auto -i $f; done

This command will process only the 16 files in the numeric sequence between and including 010 and 025 in the set
(FILE__010.DZT, FILE__011.DZT, ..., FILE__025.DZT). bash handles the zero padding for you as well.
Pretty cool.

32 Chapter 7. Advanced usage with bash

CHAPTER

EIGHT

TROUBLESHOOTING

Questions, feature requests, and bugs: please open a github issue. Kindly provide the error output, describe what you
are attempting to do, and attach the DZT/DZX/DZG file(s) causing you trouble.

If you have a question that involves sensitive or proprietary data, send me an email confidentially at ian dot nesbitt at
g mail dot com.

Thanks for reporting errors and helping to keep scientific software free and open-source!

8.1 Filtering errors

The filtering algorithm readgssi.filtering.triangular() will fail if you use scipy 1.2.x. Please upgrade
scipy to 1.3.0 to avoid errors while filtering.

8.2 Antenna code errors

Of all the errors you are likely to encounter, these are the most numerous, easiest to fix, and hardest to predict. GSSI
is liberal when it comes to naming antennas, so antenna codes, which are the primary identifying feature of the center
frequency of the antenna, are numerous. This wouldn’t be such an issue if GSSI had a list of them somewhere.

Alas, they don’t, so I’ve had to try to compile my own, and it’s incomplete. If you come across a KeyError in
readgssi.dzt.readdzt() related to a variable called ANT, chances are your antenna needs to be added to the
list. Copy and paste the error message into a new github issue and attach the DZT file to the message. I’ll try to
respond within 24 hours.

If you want to modify the code yourself, have a look at the ANT dictionary in readgssi.config. Use the key from
the error message to create a new entry in the ANT dictionary that has both your key and the frequency of the antenna
you’re using. Once you’ve added the line with your antenna code and the frequency, reinstall and test your modified
version of readgssi by Installing from source.

If your modified code is in a folder in your home directory, you should be able to reinstall using the command pip
install ~/readgssi.

If you’ve tested it and it’s working, please create a pull request with the changes, or open an issue and describe the
changes you made.

The dictionary of antenna codes and center frequencies as of May 04, 2021 (version 0.0.19) is below.

ANT = {
'code': integer center frequency
'100MHz': 100,
'200MHz': 200,

(continues on next page)

33

https://github.com/iannesbitt/readgssi/issues
https://github.com/iannesbitt/readgssi/issues/new
https://github.com/iannesbitt/readgssi/issues/new

readgssi Documentation

(continued from previous page)

'270MHz': 270,
'350MHz': 350,
'400MHz': 400,
'500MHz': 500,
'800MHz': 800,
'900MHz': 900,
'1600MHz': 1600,
'2000MHz': 2000,
'2300MHz': 2300,
'2600MHz': 2600,
'3200': 'adjustable',
'3200MLF': 'adjustable',
'gprMa': 'adjustable', # gprMax support
'GSSI': 'adjustable', # support for issue #11
'CUSTOM': 'adjustable',
'3207': 100,
'3207AP': 100,
'5106': 200,
'5106A': 200,
'50300': 300,
'350': 350,
'350HS': 350,
'D400HS': 350,
'50270': 270,
'50270S': 270,
'D50300': 300,
'5103': 400,
'5103A': 400,
'50400': 400,
'50400S': 400,
'800': 800,
'D50800': 800,
'3101': 900,
'3101A': 900,
'51600': 1600,
'51600S': 1600,
'SS MINI': 1600,
'62000': 2000,
'62000-003': 2000,
'62300': 2300,
'62300XT': 2300,
'52600': 2600,
'52600S': 2600,

}

Back to top ↑

34 Chapter 8. Troubleshooting

CHAPTER

NINE

CONTRIBUTING TO THIS PROJECT

9.1 Code contributions

Contributions to this project are always welcome. If you have questions or comments about how this software works,
I want to hear from you. Even if coding isn’t your thing, I want to make it easier for you to get involved.

There is no formal structure for contributions at the moment, but I will respond promptly to any pull request or issue
on github (https://github.com/iannesbitt/readgssi). If and when you encounter bugs, kindly provide the error output,
describe what you are attempting to do, and attach the DZT/DZX/DZG file(s) causing you trouble.

If you have a question that involves sensitive or proprietary data, send me an email confidentially at ian dot nesbitt at
g mail dot com.

Thanks for helping to keep scientific software free and open-source!

9.2 Contributing in other ways

readgssi is open-source software written as a side project during the completion of my Master’s degree at the
University of Maine. It is written and maintained because it makes me feel warm and fuzzy inside, and because it
helps me do my own work. It is not a money-making venture. It is intended for use by the wider scientific community
as a way to understand field data faster, better, and with less hassle.

Keeping software free and open source is an important way to help scientists make science transparent and accessible
to the wider community, and also to allow them to collaborate on better scientific outcomes and discoveries. Therefore
I strongly urge code contributions over financial ones.

However, if this work has helped you or your lab personally and you would like to say thanks by buying me a coffee,
please email me and/or seek me out at the next AGU/EGU, or drop me a couple bucks at https://paypal.me/IanNesbitt/.
Thank you for your support, it is very much appreciated. Graduate student salaries aren’t what they used to be!

Back to top ↑

35

https://github.com/iannesbitt/readgssi
https://paypal.me/IanNesbitt/

readgssi Documentation

36 Chapter 9. Contributing to this project

CHAPTER

TEN

READGSSI.READGSSI (MAIN MODULE)

• genindex

• modindex

• search

37

readgssi Documentation

38 Chapter 10. readgssi.readgssi (main module)

CHAPTER

ELEVEN

READGSSI.DZT (READS DZTS)

readgssi.dzt.header_info(header, data)
Function to print relevant header data.

Parameters

• header (dict) – The header dictionary

• data (numpy.ndarray) – The data array

readgssi.dzt.readdzt(infile, gps=Empty DataFrame Columns: [] Index: [], spm=None, start_scan=0,
num_scans=-1, epsr=None, antfreq=[None, None, None, None], ver-
bose=False, zero=[None, None, None, None])

Function to unpack and return things the program needs from the file header, and the data itself.

Parameters

• infile (str) – The DZT file location

• gps (bool) – Whether a GPS file exists. Defaults to False, but changed to pandas.
DataFrame if a DZG file with the same name as infile exists.

• spm (float) – User value of samples per meter, if specified. Defaults to None.

• epsr (float) – User value of relative permittivity, if specified. Defaults to None.

• zero (list[int,int,int,int]) – List of time-zero values per channel. Defaults to
a list of None values, which resolves to rh_zero.

• verbose (bool) – Verbose, defaults to False

Return type header (dict), radar array (numpy.ndarray), gps (False or pandas.
DataFrame)

readgssi.dzt.readtime(bytez)
Function to read dates from rfDateByte binary objects in DZT headers.

DZT rfDateByte objects are 32 bits of binary (01001010111110011010011100101111), structured as little
endian u5u6u5u5u4u7 where all numbers are base 2 unsigned int (uX) composed of X number of bits. Four
bytes is an unnecessarily high level of compression for a single date object in a filetype that often contains tens
or hundreds of megabytes of array information anyway.

So this function reads (seconds/2, min, hr, day, month, year-1980) then does seconds*2 and year+1980 and
returns a datetime object.

For more information on rfDateByte, see page 55 of GSSI’s SIR 3000 manual.

Parameters bytes (bytes) – The rfDateByte to be decoded

Return type datetime.datetime

39

https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://support.geophysical.com/gssiSupport/Products/Documents/Control%20Unit%20Manuals/GSSI%20-%20SIR-3000%20Operation%20Manual.pdf
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/datetime.html#datetime.datetime

readgssi Documentation

• genindex

• modindex

• search

40 Chapter 11. readgssi.dzt (reads DZTs)

CHAPTER

TWELVE

READGSSI.ARRAYOPS (ARRAY MANIPULATION)

readgssi.arrayops.distance_normalize(header, ar, gps, verbose=False)
Distance normalization algorithm. Uses a GPS array to calculate expansion and contraction needed to convert
from time-triggered to distance-normalized sampling interval. Then, the samples per meter is recalculated and
inserted into the header for proper plotting.

Usage described in the Distance normalization section of the tutorial.

Parameters

• header (dict) – Input data array

• ar (numpy.ndarray) – Input data array

• gps (pandas.DataFrame) – GPS data from readgssi.gps.readdzg(). This is
used to calculate the expansion and compression needed to normalize traces to distance.

• verbose (bool) – Verbose, defaults to False.

Return type header (dict), radar array (numpy.ndarray), gps (False or pandas.
DataFrame)

readgssi.arrayops.flip(ar, verbose=False)
Read the array backwards. Used to reverse line direction. Usage covered in the Reversing tutorial section.

Parameters

• ar (numpy.ndarray) – Input data array

• verbose (bool) – Verbose, defaults to False

Return type radar array (numpy.ndarray)

readgssi.arrayops.reducex(ar, header, by=1, chnum=1, number=1, verbose=False)
Reduce the number of traces in the array by a number. Not the same as stack() since it doesn’t sum adjacent
traces, however stack() uses it to resize the array prior to stacking.

Used by stack() and distance_normalize() but not accessible from the command line or
readgssi.readgssi().

Parameters

• ar (numpy.ndarray) – Input data array

• by (int) – Factor to reduce by. Default is 1.

• chnum (int) – Chunk number to display in console. Default is 1.

• number (int) – Number of chunks to display in console. Default is 1.

• verbose (bool) – Verbose, defaults to False.

41

https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

readgssi Documentation

Return type radar array (numpy.ndarray)

readgssi.arrayops.stack(ar, header, stack='auto', verbose=False)
Stacking algorithm. Stacking is the process of summing adjacent traces in order to reduce noise — the thought
being that random noise around zero will cancel out and data will either add or subtract, making it easier to
discern.

It is also useful for displaying long lines on a computer screen. Usage is covered in the Stacking section of the
tutorial.

stack='auto' results in an approximately 2.5:1 x:y axis ratio. stack=3 sums three adjacent traces into a
single trace across the width of the array.

Parameters

• ar (numpy.ndarray) – Input data array

• by (int) – Factor to stack by. Default is “auto”.

Return type radar array (numpy.ndarray)

• genindex

• modindex

• search

42 Chapter 12. readgssi.arrayops (array manipulation)

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CHAPTER

THIRTEEN

READGSSI.FILTERING

readgssi.filtering.bgr(ar, header, win=0, verbose=False)
Horizontal background removal (BGR). Subtracts off row averages for full-width or window-length slices. For
usage see Getting rid of horizontal noise.

Parameters

• ar (numpy.ndarray) – The radar array

• header (dict) – The file header dictionary

• win (int) – The window length to process. 0 resolves to full-width, whereas positive
integers dictate the window size in post-stack traces.

Return type numpy.ndarray

readgssi.filtering.bp(ar, header, freqmin, freqmax, zerophase=True, verbose=False)
Vertical butterworth bandpass. This filter is not as effective as triangular() and thus is not available through
the command line interface or through readgssi.readgssi.readgssi().

Filter design and implementation are dictated by obspy.signal.filter.bandpass().

Parameters

• ar (np.ndarray) – The radar array

• header (dict) – The file header dictionary

• freqmin (int) – The lower corner of the bandpass

• freqmax (int) – The upper corner of the bandpass

• zerophase (bool) – Whether to run the filter forwards and backwards in order to coun-
teract the phase shift

• verbose (bool) – Verbose, defaults to False

Return type numpy.ndarray

readgssi.filtering.dewow(ar, verbose=False)
Polynomial dewow filter. Written by fxsimon.

Warning: This filter is still experimental.

Parameters

• ar (numpy.ndarray) – The radar array

• verbose (bool) – Verbose, default is False

43

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.obspy.org/packages/autogen/obspy.signal.filter.bandpass.html#obspy.signal.filter.bandpass
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

readgssi Documentation

Return type numpy.ndarray

readgssi.filtering.triangular(ar, header, freqmin, freqmax, zerophase=True, verbose=False)
Vertical triangular FIR bandpass. This filter is designed to closely emulate that of RADAN.

Filter design is implemented by scipy.signal.firwin() with numtaps=25 and implemented with
scipy.signal.lfilter().

Note: This function is not compatible with scipy versions prior to 1.3.0.

Parameters

• ar (np.ndarray) – The radar array

• header (dict) – The file header dictionary

• freqmin (int) – The lower corner of the bandpass

• freqmax (int) – The upper corner of the bandpass

• zerophase (bool) – Whether to run the filter forwards and backwards in order to coun-
teract the phase shift

• verbose (bool) – Verbose, defaults to False

Return type numpy.ndarray

• genindex

• modindex

• search

44 Chapter 13. readgssi.filtering

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin.html#scipy.signal.firwin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html#scipy.signal.lfilter
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CHAPTER

FOURTEEN

READGSSI.FUNCTIONS (REUSABLES)

A number of helper functions used by readgssi.

readgssi.functions.dzterror(e='')
Prints an error message then calls gpx2dzg.functions.genericerror() and passes filetype=’DZT’.

e [str] The error message to print.

readgssi.functions.dzxerror(e='')
Prints an error message then calls gpx2dzg.functions.genericerror() and passes filetype=’DZX’.

e [str] The error message to print.

readgssi.functions.genericerror(filetype='file')
Prints a standard message for a generic error using the gpx2dzg.functions.printmsg() function. This is called
from functions in gpx2dzg.io.

filetype [str] The type of file this message is about. Used to format error string.

readgssi.functions.naming(outfile=None, infile_basename=None, chans=[1], chan=0, normal-
ize=False, zero=None, stack=1, reverse=False, bgr=False, win=None,
gain=None, dewow=None, freqmin=None, freqmax=None, plot-
ting=None, zoom=None, absval=False)

The Dr. Seth W. Campbell Honorary Naming Scheme

Descriptive naming, used to indicate the processing steps done on each file, if a specific output filename is not
given. The theory behind this naming scheme is simple: it can be tough to remember how you made that plot!

Named for my graduate advisor, whom I love and cherish, who introduced me to this way of naming outputs.

naming scheme for exports:
CHARACTERS | MEANING

Ch0 | Profile from channel 0 (can range from 0 - 3)
Dn | Distance normalization
Tz233 | Time zero at 233 samples
S8 | Stacked 8 times
Rv | Profile read in reverse (flipped horizontally)
Bgr75 | Background removal filter with window size of 75
Dw | Dewow filter
Bp70-130 | triangular FIR filter applied from 70 to 130 MHz
G30 | 30x contrast gain
Abs | Color scale represents absolute value of vertical gradient
Z10.20.7.5 | zoom from 10-20 axis units on the x-axis and 5-7 on the z-axis

Parameters

45

readgssi Documentation

• outfile (str) – The base output filename. If None, a new outfile will be generated
from the input file basename. If it already exists, subsequent arguments will be appended.
Defaults to None.

• infile_basename (str) – The input file basename (without file extension). Defaults
to None.

• chans (list[int,int,int,int]) – A list of channels, which is converted to the
number of channels using len(). Defaults to [1].

• chan (int) – The current channel number. Defaults to 0.

• normalize (bool) – Whether or not the array is distance-normalized. Defaults to False.

• zero (int) – The zero point for this particular channel. Defaults to None.

• stack (int) – The number of times the array was stacked. Defaults to 1.

• reverse (bool) – Whether or not the file was reversed. Defaults to False.

• bgr (bool) – Whether or not BGR was applied. Defaults to False.

• win (int) – The BGR window size if applicable. 0 is full-width BGR, greater than 0 is
window size. Defaults to None.

• gain (float) – The gain value applied to the plot. Defaults to None.

• dewow (bool) – Whether or not dewow was applied. Defaults to None.

• freqmin (int) – The lower corner of the bandpass filter if applicable. Defaults to None.

• freqmax (int) – The upper corner of the bandpass filter if applicable. Defaults to None.

• plotting (int) – Stand-in for whether or not a plot was generated. The integer represents
the plot height. Defaults to None.

• zoom (list[int,int,int,int]) – The zoom extents applied to the image. Defaults
to None.

• absval (bool) – Whether or not the plot is displayed with absolute value of gradient.
Defaults to False.

readgssi.functions.printmsg(msg)
Prints with date/timestamp.

Parameters msg (str) – Message to print

readgssi.functions.zoom(zoom, extent, x, z, verbose=False)
Logic to figure out how to set zoom extents. If specified limits are out of bounds, they are set back to boundary
extents. If limits of a specified axis are equal, they are expanded to the full extent of that axis.

Parameters

• zoom (list[int,int,int,int]) – Zoom extents to set programmatically for mat-
plotlib plots. Must pass a list of four integers: [left, right, up, down]. Since the
z-axis begins at the top, the “up” value is actually the one that displays lower on the page.
All four values are axis units, so if you are working in nanoseconds, 10 will set a limit 10
nanoseconds down. If your x-axis is in seconds, 6 will set a limit 6 seconds from the start
of the survey. It may be helpful to display the matplotlib interactive window at full extents
first, to determine appropriate extents to set for this parameter. If extents are set outside the
boundaries of the image, they will be set back to the boundaries. If two extents on the same
axis are the same, the program will default to plotting full extents for that axis.

46 Chapter 14. readgssi.functions (reusables)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

readgssi Documentation

• extent (list[int,int,int,int]) – Full extent boundaries of the image, in the
style [left, right, up, down].

• x (str) – X axis units

• z (str) – Z axis units

• verbose (bool) – Verbose, defaults to False

• genindex

• modindex

• search

47

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

readgssi Documentation

48 Chapter 14. readgssi.functions (reusables)

CHAPTER

FIFTEEN

READGSSI.GPS (INGEST GPS INFO)

Reads GPS information from DZG files.

readgssi.gps.msgparse(msg)
Deprecated since version 0.0.12.

This function returns the NMEA message variables shared by both RMC and GGA.

Parameters msg (pynmea2.nmea.NMEASentence) – A pynmea2 sentence object.

Return type datetime.datetime, float, float

readgssi.gps.pause_correct(header, dzg_file, threshold=0.25, verbose=False)
This is a streamlined way of removing pauses from DZG files and re-assigning trace values. GSSI controllers
have a bug in which GPS sentences are collected with increasing trace numbers even though radar trace collec-
tion is stopped. This results in a misalignment between GPS and radar traces of the same number. This function
attempts to realign the trace numbering in the GPS file by identifying stops via a calculated velocity field.

Disclaimer: this function will identify and remove ALL pauses longer than 3 epochs and renumber the traces
accordingly. Obviously this can have unintended consequences if the radar controller remains collecting data
during these periods. Please be extremely cautious and only use this functionality on files you know have
radar pauses that are accompanied by movement pauses. A backup of the original DZG file is made each time
this function is run on a file, which means that if you make a mistake, you can simply copy the DZG backup
(.DZG.bak) and overwrite the output (.DZG).

Any time you are working with original files, it is always good to have a “working” and “raw” copy of your
data. Experimental functionality in readgssi cannot be held responsible for its actions in modifying data. You
are responsible for keeping a raw backup of your data just in case.

A detailed explanation of each step taken by this function is available in the code comments.

Parameters

• header (dict) – File header produced by readgssi.dzt.readdzt()

• dzg_file (str) – DZG GPS file (the original .DZG, not the backup)

• threshold (float) – Numerical velocities threshold, under which will be considered a
“pause”

• verbose (bool) – Verbose, defaults to False

Return type corrected, de-paused GPS data (pandas.DataFrame)

readgssi.gps.readdzg(fi, frmt, header, verbose=False)
A parser to extract gps data from DZG file format. DZG contains raw NMEA sentences, which should include
at least RMC and GGA.

NMEA RMC sentence string format: $xxRMC,UTC hhmmss,status,lat DDmm.sss,lon DDDmm.
sss,SOG,COG,date ddmmyy,checksum *xx

49

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

readgssi Documentation

NMEA GGA sentence string format: $xxGGA,UTC hhmmss.s,lat DDmm.sss,lon DDDmm.sss,
fix qual,numsats,hdop,mamsl,wgs84 geoid ht,fix age,dgps sta.,checksum *xx

Shared message variables between GGA and RMC: timestamp, latitude, and longitude

RMC contains a datestamp which makes it preferable, but this parser will read either.

Parameters

• fi (str) – File containing gps information

• frmt (str) – GPS information format (‘dzg’ = DZG file containing gps sentence strings
(see below); ‘csv’ = comma separated file with: lat,lon,elev,time)

• header (dict) – File header produced by readgssi.dzt.readdzt()

• verbose (bool) – Verbose, defaults to False

Return type

GPS data (pandas.DataFrame)

The dataframe contains the following fields: * datetimeutc (datetime.datetime) * trace
(int trace number) * longitude (float) * latitude (float) * altitude (float) * velocity
(float) * sec_elapsed (float) * meters (float meters traveled)

• genindex

• modindex

• search

50 Chapter 15. readgssi.gps (ingest GPS info)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CHAPTER

SIXTEEN

READGSSI.PLOT

• genindex

• modindex

• search

51

readgssi Documentation

52 Chapter 16. readgssi.plot

CHAPTER

SEVENTEEN

READGSSI.TRANSLATE (OUTPUTS)

readgssi.translate.csv(ar, outfile_abspath, header=None, verbose=False)
Output to csv. Data is read into a pandas.DataFrame, then written using pandas.DataFrame.
to_csv().

Parameters

• ar (numpy.ndarray) – Radar array

• outfile_abspath (str) – Output file path

• header (dict) – File header dictionary to write, if desired. Defaults to None.

• verbose (bool) – Verbose, defaults to False

readgssi.translate.dzt(ar, outfile_abspath, header, verbose=False)

Warning: DZT output is only currently compatible with single-channel files.

This function will output a RADAN-compatible DZT file after processing. This is useful to circumvent
RADAN’s distance-normalization bug when the desired outcome is array migration.

Users can set DZT output via the command line by setting the -f dzt flag, or in Python by doing the following:

from readgssi.dzt import readdzt
from readgssi import translate
from readgssi.arrayops import stack, distance_normalize

first, read a data file
header, data, gps = readdzt('FILE__001.DZT')

do some stuff
(distance normalization must be done before stacking)
for a in data:

header, data[a], gps = distance_normalize(header=header, ar=data[a], gps=gps)
header, data[a], stack = stack(header=header, ar=data[a], stack=10)

output as modified DZT
translate.dzt(ar=data, outfile_abspath='FILE__001-DnS10.DZT', header=header)

This will output FILE__001-DnS10.DZT as a distance-normalized DZT.

Parameters

• ar (numpy.ndarray) – Radar array

53

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

readgssi Documentation

• infile_basename (str) – Input file basename

• outfile_abspath (str) – Output file path

• header (dict) – File header dictionary to write, if desired. Defaults to None.

• verbose (bool) – Verbose, defaults to False

readgssi.translate.gprpy(ar, header, outfile_abspath, verbose=False)
Save in a format GPRPy can open (numpy binary .npy and a .json formatted header file).

Note: GPRPy support for this feature is forthcoming (https://github.com/NSGeophysics/GPRPy/issues/3#
issuecomment-460462612).

Parameters

• ar (numpy.ndarray) – Radar array

• outfile_abspath (str) – Output file path

• header (dict) – File header dictionary to write, if desired. Defaults to None.

• verbose (bool) – Verbose, defaults to False

readgssi.translate.h5(ar, infile_basename, outfile_abspath, header, verbose=False)

Warning: HDF5 output is not yet available.

In the future, this function will output to HDF5 format.

Parameters

• ar (numpy.ndarray) – Radar array

• infile_basename (str) – Input file basename

• outfile_abspath (str) – Output file path

• header (dict) – File header dictionary to write, if desired. Defaults to None.

• verbose (bool) – Verbose, defaults to False

readgssi.translate.json_header(header, outfile_abspath, verbose=False)
Save header values as a .json so another script can take what it needs. This is used to export to GPRPy.

Parameters

• header (dict) – The file header dictionary

• outfile_abspath (str) – Output file path

• verbose (bool) – Verbose, defaults to False

readgssi.translate.numpy(ar, outfile_abspath, header=None, verbose=False)
Output to binary numpy binary file (.npy) with the option of writing the header to .json as well.

Parameters

• ar (numpy.ndarray) – Radar array

• outfile_abspath (str) – Output file path

54 Chapter 17. readgssi.translate (outputs)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://github.com/NSGeophysics/gprpy
https://github.com/NSGeophysics/GPRPy/issues/3#issuecomment-460462612
https://github.com/NSGeophysics/GPRPy/issues/3#issuecomment-460462612
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://github.com/NSGeophysics/gprpy
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

readgssi Documentation

• header (dict) – File header dictionary to write, if desired. Defaults to None.

• verbose (bool) – Verbose, defaults to False

readgssi.translate.segy(ar, outfile_abspath, header, verbose=False)

Warning: SEGY output is not yet available.

In the future, this function will output to SEGY format.

Parameters

• ar (numpy.ndarray) – Radar array

• outfile_abspath (str) – Output file path

• header (dict) – File header dictionary to write, if desired. Defaults to None.

• verbose (bool) – Verbose, defaults to False

readgssi.translate.writetime(d)
Function to write dates to rfDateByte binary objects in DZT headers. An inverse of the readgssi.dzt.
readtime() function.

DZT rfDateByte objects are 32 bits of binary (01001010111110011010011100101111), structured as little
endian u5u6u5u5u4u7 where all numbers are base 2 unsigned int (uX) composed of X number of bits. Four
bytes is an unnecessarily high level of compression for a single date object in a filetype that often contains tens
or hundreds of megabytes of array information anyway.

So this function reads a datetime object and outputs (seconds/2, min, hr, day, month, year-1980).

For more information on rfDateByte, see page 55 of GSSI’s SIR 3000 manual.

Parameters d (datetime) – the datetime.datetime to be encoded

Return type bytes

• genindex

• modindex

• search

55

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://support.geophysical.com/gssiSupport/Products/Documents/Control%20Unit%20Manuals/GSSI%20-%20SIR-3000%20Operation%20Manual.pdf
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#bytes

readgssi Documentation

56 Chapter 17. readgssi.translate (outputs)

CHAPTER

EIGHTEEN

READGSSI.CONSTANTS (ESSENTIALS)

This module contains a number of variables that readgssi needs to perform physics calculations and interpret radar
information from DZT files.

18.1 Physical constants

c = 299792458 - celerity of electromagnetic waves in a vacuum

Eps_0 = 8.8541878 * 10**(-12) - epsilon naught, the vacuum permittivity

Mu_0 = 1.257 * 10**(-6) - mu naught, the vacuum permeability

18.2 GSSI constants

MINHEADSIZE = 1024 - minimum DZT file header size in bytes

PAREASIZE = 128 - DZT file fixed info area size in bytes

18.3 Dictionaries

UNIT - dictionary of GSSI field units and associated unit codes

ANT - dictionary of GSSI antennas and associated antenna codes (read more about these in Antenna code errors)

• genindex

• modindex

• search

57

readgssi Documentation

58 Chapter 18. readgssi.constants (essentials)

CHAPTER

NINETEEN

READGSSI.CONFIG (ESSENTIALS)

This module contains some things readgssi needs to operate, both command line and python-related. It contains the
distribution name, author, and help text.

• genindex

• modindex

• search

59

readgssi Documentation

60 Chapter 19. readgssi.config (essentials)

CHAPTER

TWENTY

INDICES AND TABLES

• genindex

• modindex

• search

Back to top ↑

61

readgssi Documentation

62 Chapter 20. Indices and tables

PYTHON MODULE INDEX

r
readgssi.arrayops, 41
readgssi.constants, 57
readgssi.dzt, 39
readgssi.filtering, 43
readgssi.functions, 45
readgssi.gps, 49
readgssi.translate, 53

63

readgssi Documentation

64 Python Module Index

INDEX

B
bgr() (in module readgssi.filtering), 43
bp() (in module readgssi.filtering), 43

C
csv() (in module readgssi.translate), 53

D
dewow() (in module readgssi.filtering), 43
distance_normalize() (in module read-

gssi.arrayops), 41
dzt() (in module readgssi.translate), 53
dzterror() (in module readgssi.functions), 45
dzxerror() (in module readgssi.functions), 45

F
flip() (in module readgssi.arrayops), 41

G
genericerror() (in module readgssi.functions), 45
gprpy() (in module readgssi.translate), 54

H
h5() (in module readgssi.translate), 54
header_info() (in module readgssi.dzt), 39

J
json_header() (in module readgssi.translate), 54

M
module

readgssi.arrayops, 41
readgssi.constants, 57
readgssi.dzt, 39
readgssi.filtering, 43
readgssi.functions, 45
readgssi.gps, 49
readgssi.translate, 53

msgparse() (in module readgssi.gps), 49

N
naming() (in module readgssi.functions), 45

numpy() (in module readgssi.translate), 54

P
pause_correct() (in module readgssi.gps), 49
printmsg() (in module readgssi.functions), 46

R
readdzg() (in module readgssi.gps), 49
readdzt() (in module readgssi.dzt), 39
readgssi.arrayops

module, 41
readgssi.constants

module, 57
readgssi.dzt

module, 39
readgssi.filtering

module, 43
readgssi.functions

module, 45
readgssi.gps

module, 49
readgssi.translate

module, 53
readtime() (in module readgssi.dzt), 39
reducex() (in module readgssi.arrayops), 41

S
segy() (in module readgssi.translate), 55
stack() (in module readgssi.arrayops), 42

T
triangular() (in module readgssi.filtering), 44

W
writetime() (in module readgssi.translate), 55

Z
zoom() (in module readgssi.functions), 46

65

	Installing
	Requirements
	Installation guide
	Testing

	General usage
	Python usage
	bash usage

	Reading radar data
	Reading with Python
	Reading with bash

	Plotting radargrams
	Basic plotting
	Setting gain
	Changing axis units
	Making poster-quality figures
	Changing the colormap
	Suppressing the Matplotlib window

	Processing radar arrays
	Stacking
	Getting rid of horizontal noise
	Distance normalization
	Reversing

	Translating to different formats
	CSV
	numpy binary
	GPRPy-compatible format

	Advanced usage with bash
	Processing all files in a folder
	Processing specific subsets of files

	Troubleshooting
	Filtering errors
	Antenna code errors

	Contributing to this project
	Code contributions
	Contributing in other ways

	readgssi.readgssi (main module)
	readgssi.dzt (reads DZTs)
	readgssi.arrayops (array manipulation)
	readgssi.filtering
	readgssi.functions (reusables)
	readgssi.gps (ingest GPS info)
	readgssi.plot
	readgssi.translate (outputs)
	readgssi.constants (essentials)
	Physical constants
	GSSI constants
	Dictionaries

	readgssi.config (essentials)
	Indices and tables
	Python Module Index
	Index

